skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liou, Kuo-Nan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. In response to the coronavirus disease of 2019 (COVID-19),California issued statewide stay-at-home orders, bringing about abrupt anddramatic reductions in air pollutant emissions. This crisis offers us anunprecedented opportunity to evaluate the effectiveness of emissionreductions in terms of air quality. Here we use the Weather Research and Forecastingmodel with Chemistry (WRF-Chem) in combination with surface observations tostudy the impact of the COVID-19 lockdown measures on air quality insouthern California. Based on activity level statistics and satelliteobservations, we estimate the sectoral emission changes during the lockdown.Due to the reduced emissions, the population-weighted concentrations of fineparticulate matter (PM2.5) decrease by 15 % in southernCalifornia. The emission reductions contribute 68 % of the PM2.5concentration decrease before and after the lockdown, while meteorologyvariations contribute the remaining 32 %. Among all chemical compositions,the PM2.5 concentration decrease due to emission reductions isdominated by nitrate and primary components. For O3 concentrations, theemission reductions cause a decrease in rural areas but an increase in urbanareas; the increase can be offset by a 70 % emission reduction inanthropogenic volatile organic compounds (VOCs). These findings suggest thata strengthened control on primary PM2.5 emissions and a well-balancedcontrol on nitrogen oxides and VOC emissions are needed to effectively andsustainably alleviate PM2.5 and O3 pollution in southernCalifornia. 
    more » « less
  2. Abstract. The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol–cloud radiative forcing produced by ice clouds. 
    more » « less
  3. Abstract. The climatic and health effects of aerosols are strongly dependent on the intra-annual variations in their loading and properties. While the seasonal variations of regional aerosol optical depth (AOD) have been extensively studied, understanding the temporal variations in aerosol vertical distribution and particle types is also important for an accurate estimate of aerosol climatic effects. In this paper, we combine the observations from four satellite-borne sensors and several ground-based networks to investigate the seasonal variations of aerosol column loading, vertical distribution, and particle types over three populous regions: the Eastern United States (EUS), Western Europe (WEU), and Eastern and Central China (ECC). In all three regions, column AOD, as well as AOD at heights above 800m, peaks in summer/spring, probably due to accelerated formation of secondary aerosols and hygroscopic growth. In contrast, AOD below 800m peaks in winter over WEU and ECC regions because more aerosols are confined to lower heights due to the weaker vertical mixing. In the EUS region, AOD below 800m shows two maximums, one in summer and the other in winter. The temporal trends in low-level AOD are consistent with those in surface fine particle (PM2.5) concentrations. AOD due to fine particles ( < 0.7µm diameter) is much larger in spring/summer than in winter over all three regions. However, the coarse mode AOD ( > 1.4µm diameter), generally shows small variability, except that a peak occurs in spring in the ECC region due to the prevalence of airborne dust during this season. When aerosols are classified according to sources, the dominant type is associated with anthropogenic air pollution, which has a similar seasonal pattern as total AOD. Dust and sea-spray aerosols in the WEU region peak in summer and winter, respectively, but do not show an obvious seasonal pattern in the EUS region. Smoke aerosols, as well as absorbing aerosols, present an obvious unimodal distribution with a maximum occurring in summer over the EUS and WEU regions, whereas they follow a bimodal distribution with peaks in August and March (due to crop residue burning) over the ECC region. 
    more » « less